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EVATLUATION OF A NEW METHOD OF INTEGRATING THE ORBITAL
EQUATIONS OF MOTION FOR USE IN SPACE NAVIGATION

By John D. McLean
Ames Research Center

SUMMARY

The applicability of a new method of integrating the orbital equations of
motion, developed by Dr. J. M. A. Danby of Yale University Observatory, to the
problem of space navigation is investigated. The investigation is carried out
by means of a digital computer program written for the method. The transearth
and translunar phases of a circumlunar trajectory are taken as sample problems,
but the method can also be applied to any orbital mission. The gravitational
effects of the sun, moon, earth, and earth's oblateness are considered.

A detailed description of the computer program, including listings, is
presented. Data show the effects of various error sources and the trade off
between computing speed and accuracy. The method is compared with Cowell's
method on the basis of computer storage, integration time, and accuracy.

INTRODUCTION

In recent years considerable study has been devoted to the problems of
navigation and guidance for manned space missions. Except for near-earth sat-
ellites, the astronaut will probably be provided with the capability, at least
as a secondary system, for carrying out these tasks without the aid of ground-
based equipment. If such an on-board navigation and guidance system is not to
be restricted to limited emergency procedures, a digital computer will be
required aboard the spacecraft.

One of the more demanding functions of such a computer is to solve the
vehicle's equations of motion. The most commonly proposed methed is the numer-
ical integration of the differential equations of motion, although there are
other possibilities such as the interpolation of stored data. Two well-known
methods of setting up the equations to be integrated are Cowell's method in
which the total accelerations acting on the spacecraft are integrated, and
FEncke's method in which differential equations for perturbations from an oscu-
lating conic are solved. Both of these methods require a complex integration
routine, and any alternative which will substantially reduce the time and stor-
age requirements is desirable. For on-board use the reduction in storage
requirements is particularly desirable because the decrease in the number of
components enhances reliability and reduces weight and power requirements. In
addition, the problem of accurately starting the numerical solution of a system
of differential equations is quite complicated. Since the estimated trajectory
for a navigation system must be restarted every time new observational data are
obtained, it would be desirable to avoid or minimize this difficulty.



The purpose of this report is to present an evaluation, from the stand-
point of application to on-board computation, of a new approach to the problem
of integrating the equations of motion. This integration procedure was devel-
oped by Dr. J. M. A. Danby of Yale University Observatory and is described in

"detail in references 1 and 2. As in Encke's method, the perturbations of the

true orbit from a reference conic are computed,but the method reduces the inte-
gration of the perturbing accelerations from the solution of a set of differen-
tial equations to simple quadratures. Although a well-known mathematical
technique is used to obtain the perturbations, Danby was, to the author's
knowledge, the first to recognize the advantage of applying this technique to
orbital equations. This method of solving the equations of motion will be
referred to in the remainder of the report as "Danby's method." It will be
shown how Danby's method can be used to reduce the problems discussed in the
preceding paragraph.

The original application of Danby's method, as described in references 1
and 2, fits the trajectory with a small number of conics, called mean orbits.
These mean orbits closely approximate the true orbit, including perturbations,
thereby allowing it to be studied using closed form equations. The advantages
of this procedure for many theoretical studies are obvious, but the accurate
mean orbits are unnecessary for the specialized application of space navigation.
Since the calculation of the mean orbits requires each portion of the trajec-
tory to be integrated several times, it is desirable to avoid such calculations.
Likewise, the method, as described in reference 2,uses eccentric anomaly as the
independent variable in order to avoid inverting Kepler's equation. Since
space navigation requires frequent processing of data at accurately known times,
it would be desirable to use time as the independent variable. In this study
several modifications have been made to Danby's method,as presented in the ref-
erences,in order to eliminate these two difficulties without sacrificing com-
puter storage requirements and speed. These modifications are described in
detail and the modified system is compared with Cowell's method® for translunar
and transearth trajectories.

NOTATION

a semimajor axis of conic

A;  lower bound on AQ

AQ measure of validity of Simpson's rule
Ap upper bound on position perturbation
AS lower bound on position perturbation

upper bound on AQ

IThroughout this report "Cowell's method" will refer to Cowell's method of
setting up the orbital equations of motion for integration rather than Cowell's
numerical integration method.
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total number of integration steps

time

6x1l matrix of perturbing accelerations

gravitational potential

potential of central body to which conic is referred
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N

vector of small deviation in velocity
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Cartesian components of vehicle's position

6x1 matrix (state vector of position and velocity deviations
from conic)

transformed forcing function
gradient operator
Increment in time

magnitude of terminal position and velocity deviations of
Danby solution from Cowell solution

increment in eccentric (or hyperbolic) anomaly



@ state transition matrix

P, 3P ,03,Pa submatrices of &

Superscripts
T transpose of a matrix
derivative with respect to time

a vector or 3Ixl matrix

Subscripts
i,n integers

o) initial value, usually referring to time of last rectification
THE INTEGRATION METHOD

The basic principles of Danby's method as presented in reference 1 are
summarized here for the convenience of the reader. A more general coverage of
the mathematical principles involved can be found in reference 3 or in texts
dealing with vector and matrix differential equations or multidimensional con-

trol theory.

The basis of the method is the solution of the orbital equations of motion
in terms of a reference conic and a set of associated perturbations. The com-
putation of the perturbations is accomplished by simple quadratures through
the use of the state transition matrix, in contrast to Encke's method which
reguires the solution of a system of differential equations. The transition
matrix, o(t, to), is the matrix of first partial derivatives of the components
(all the trajectory calculations discussed in this report are carried out in
Cartesian coordinates) of position and velocity at time + with respect to
the same quantities at time +t,. It can be shown that if x is a 6xl matrix,
or state vector, of position and velocity deviations from the reference trajec-

tory then
x(t) = o(t, t,)x(to) (1)

The use of this matrix in the integration is explained as follows:
The orbital equations of motion may be written as
R+ F=vu(R+7 +ul+7, t) (2)

where U is the gravitational potential due to the central body of the refer-
ence conic, R is the position vector on the conic, T is the vector of

L



position deviations of the true orbit from the conic and u is the vector of
perturbing accelerations. If it is assumed that r 1s sufficiently small,
the true orbit may be approximated in terms of linear (first order) perturba-
tions from the reference conic. In this case

T = F (R)T+ u(R, t) (3)

where Fy is the 3x3 matrix of first partial derivatives of VU with respect
to the components of R.

Since R 1is a function only of position on the reference conic, hence of
time, equation (3) represents a system of three linear second-order differen-
tial equations which can be rewritten as a first-order system to give

X

Fx + u (h)

where

gl ooo

and

F

1

G, o)

.+ O

Tt can be shown that the solution of the homogeneous part of equation (4) is
given by equation (1) and that the complete solution is

t
x = 0(t, to)xo + @(t, tg) f o (1, to)uly)ar (5)
tO

Since the reference trajectory is a conic,the elements of ¢ can be
computed in closed form.2 Furthermore, u is a function only of the position
vector on the conic and time; that is, it does not depend explicitly on the
perturbations. Thus the integrand in equation (5) is a known function of time
and a simple quadrature formula, such as Simpson's rule, can be used to solve
for each component of x separately.

2gince © also satisfies the homogeneous part of equation (L); that is,
o = Fo

where o(to) = I, ® may be found by numerical integration. In this case the
reference orbit need not be a conic and the effects of perturbing accelera-
tions on the transition matrices may be included. This is the method used to
obtain & in Cowell program B discussed later in the report.



In addition, the problems involved in starting or restarting a numerical
integration of a differential equation are eliminated. The elimination of a
complex restart procedure is particularly important in a navigation system
because the integration is stopped and restarted frequently to allow processing
of observed data and revision of the estimated trajectory.

As the integration proceeds, the perturbations will grow until r 1s so
large that equation (3) is no longer valid. When this occurs it is necessary
to obtain a new reference conic (a process called rectification) for which
equation (3) is valid. It is customary in most integration schemes to rectify
only after r becomes too large, in which case the integration must be
restarted at a point where r is still below the desired bound. It is pos-
sible, however, to rectify any time before r exceeds its bound.

APPLICATION TO ON-BOARD COMPUTATION

The purpose of the present study is to evaluate the utility of Danby's
method for use in on-board space navigation systems, and a digital computer
program was written for that evaluation. The details of the program, which
was designed to be incorporated into a complete (simulated) guidance and navi-
gation system at a later date, are presented in the appendixes. Appendix A
contains the formulas used for the reference conic and a derivation of the
equations (different from the equations of refs. 1 and 2) for the transition
matrices. The equations for the components of the forcing function and the
quadrature formula are given in appendixes B and C, respectively, and the pro-
gram listings are given in appendix D.

As was stated earlier, certain modifications were made in the mechaniza-
tion in order to use Danby's method to best advantage in the space navigation
problem. These modifications are discussed in detail in the following para-

graphs.

The Reference Orbit and Rectification

The first modification is in the choice of the reference conic and this
in turn requires a different rectification procedure. 1In the application
described in references 1 and 2, the integration is started at time t, using
the osculating conic as the reference orbit and rectification is carried out
at some time, t,, when 1 exceeds a predetermined value. At that time a new
reference conic is computed which has a different initial velocity and passes
through the position on the perturbed orbit at t;. The integration and rec-
tification are repeated several times, always starting at t, and going to
progressively later values of t;, until a reference conic, or mean orbit, is
obtained which approximates a large segment of the true orbit very closely (in
position). Because of this repeated integration, it is unnecessary to con-
strain r to very small values, and a large number of integration steps are
made between rectifications.



Since the determination of an accurate mean orbit is not necessary for
space navigation, it was decided to eliminate the repeated integration and use
the osculating conic as the only reference orbit. In this case a more strin-
gent restriction must be put on r in order to obtain the desired accuracy,
and it was found that over most of the trajectory rectification must occur
after each integration interval. If the value of r is used to determine
when to rectify, the maximum allowable value must be exceeded before it is
known whether rectification is necessary. Thus the new conic must originate
at the beginning of the last integration step, and the integration over this
last step must be repeated. If this rectification procedure is used with the
osculating conic as the reference trajectory, most of the trajectory will be
integrated twice. For this reason the program was arranged to require recti-
fication after each integration step. There is negligible penalty in computing
time or storage for such frequent rectification, but it was found,.as will be
discussed later, that excessive round-off errors are encountered near the cen-
ters of attraction. This difficulty can be avoided while still maintaining
efficient use of computing time by the use of double precision for the computa-
tion of the reference conic. An alternate method would be to take several
integration steps between rectifications near the centers of attraction while
rectifying after every integration step elsewhere.

Choice of the Independent Variable

The second modification in the use of Danby's method was in the choice of
the independent variable. Danby (ref. 2) recommended that the eccentric anom-
aly of the Keplerian orbit be used in order to avoid the iteration necessary
for the inversion of Kepler's equation. While this choice has obvious advan-
tages for a trajectory study, it is not particularliy suitable for an on-board
navigation system. Such a system requires that quantities from which the tra-
Jectory can be determined be observed at intervals. By some method a trajec-
tory is estimated and the values that the observations would have if the space-
craft were on the estimated trajectory are computed. Because of observational
errors the actual trajectory can never be known, and that estimated trajectory
which minimizes the differences or residuals between the actual and computed
observations is found. Since the times of the observations are fixed, they
will occur at different eccentric anomalies for each estimated trajectory.
Hence, the eccentric anomalies at the times of the observations are unknowns
to be determined, while the times associated with them can be known quite
accurately.

This difficulty presumably could be overcome by some sort of interpola-
tion scheme, but the cost in computer storage would be large. In addition, if
a Kalman filter type (ref. 4) of trajectory determination is used, the transi-
tion matrices between observations would be needed, and these must relate the
states at the two different times. For these reasons, time was chosen as the
independent variable. However, in order to minimize the number of solutions
of Kepler's equation, the integration was set up as outlined below.



The Integration

Although the program in its final form was set up to rectify after each
integration step, this discussion 1is presented so as to be equally applicable
to the case where several integration steps are made between rectifications.
(The program presented in appendix D can be modified fairly easily to take
several steps between rectifications.) As an aid to clarity in discussion, to
is defined as the time of the last rectification while &6 1is the change in
eccentric anomaly between t, and a subsequent time.

Assume that equation (5) has been integrated from to, to t, and it is
desired to continue the integration to t,i5. This integration proceeds as

follows:

(1) At t,, the elements of u(tp) and @(ty,t,) have been computed in
the previous step unless ty = to. In the latter case & 1is the unit matrix

and u(tp) must be computed.

(2) The forcing function u is transformed to time t, by

yn = o (tnp, to)ultn)

where the transformed forcing function y is the integrand in equation (5).

(3) The angle 6 1is increased from 0, to (6y + hg) and the associated
position and velocity are computed along with the time, tp+1, the transition
matrix  o(tpri, to), and u(tpesr). Then

Yo+ © Q—l(tn+1; to)u(tn+1)

(4) The angle 6 is increased to (6 + 2hg) and the conic is extended to
tptes If tpys 1s smaller than (or equal to) the next time at which an obser-
vation, velocity correction, or termination of the flight is to occur

Yote = @ (tgs tpes)ultnes)

is computed. This amounts to making two egual increments in 6 and accepting
the associated change in time. If <tp4o 1s greater than the next desired time
of stopping, the value of (9n+2 - Op) which will make the two increments equal
is found by iteration. This change in eccentric anomaly is halved to give a
new hm and the process 1s repeated from (2). (In the remainder of the report
the term "step size" will refer to hp and "integration step" to the interval

thg £t < tptal)

(5) The ¥p» which constitute a set of values of the forcing function at
times tp, tpy,, @8nd tpyp transformed to the rectification time, ty, are
integrated by quadratures.

These are sufficient data for the quadrature of each component of the
forcing function by Simpson's rule to give

8



th-2 -
o7 (T, tp)u(T)aT = agyp + 81¥py, * B2Vnee (6)
tn

but the gquadrature is complicated by the fact that the time increments are
unequal. Simpson's rule is derived on the assumption that the curves to be
integrated can be fit with a quadratic polynomial in the independent variable
which, in this case, is time. If the time intervals are equal, the coeffi-
cients of the polynomial are constants, but for unequal intervals they must be
calculated each time. Expressions for these coefficients are derived 1in
appendix C.

Adjustment of the Step Size

The incremental eccentric anomaly hgy over which the quadratic approxi-
mation is valid changes markedly over the length of a lunar trajectory. This
change is most radical near the centers of attraction and can be attributed
mainly to the rapid change of the elements of the transition matrices in this
region (see ref. 5). Thus, for greatest efficiency it is desirable to adjust
the step size as the integration proceeds. If the eccentric anomaly were the
independent variable, the fourth differences of the Yy, could be computed and
would give a good indication of the accuracy of the quadrature (see ref. 6).
The step size could then be adjusted to be the maximum size which would
restrict the magnitude of the fourth difference, and hence, of the error, to
the desired limit.

It is possible to derive an expression which is equivalent to the fourth
difference for unequal time increments, but the resulting computation is
rather cumbersome. Since simplicity is one of the objects of this investiga-
tion, it was decided to try a simpler procedure which was found empirically to
be quite satisfactory. This procedure is explained with the aid of sketch (a).

yn+|ti

n thst thea

Sketch (a)



The area under the quadratic curve in the sketch represents the ith
component of the integral given by equation (10). Since the perturbing accel-
erations are known to be smoothly varying functions of time, it was reasoned
that the amount of curvature in the quadratic curve passing through the Yn,i
could be used as a measure of the size of higher order fluctuations. To assume
Yn,i to be a constant would be the simplest approximation and would result in
an’integral equal to the area C;. A linear approximation would add the area
B; to this integral while the quadratic curve would add the area given by the
algebraic sum.(Ai + Bij). A measure of the curvature of the quadratic curve is
therefore the ratio of A4 to (Ai + By). The six components of the integral
were considered collectively as follows: Let 1,2 be the sum of the squares
of the A; representing position deviations while v 2 is the sum of the
squares of the A; representing velocity deviations. Similarly, let I and
vp2 represent the sums of squares of (Af + By). TFinally, define AQ as

I‘Q2 VQZ
AQ = - ) + - =
T T

The step size is automatically adjusted so that the AQ remains in the range

Ay < Ag < Ay

where Ay and Ay are input constants.

The step size must be small enough for the linearity assumption (that the
true orbit can be expressed accurately in terms of small perturbations from
the reference conic) to still be valid. This means that the error, &r, in the
position perturbation vector, r, must be small compared to the position vector
of the reference conic. If one uses the error analysis of reference 1 on a
simple one-dimensional example, it is seen that over most of the trajectory
dr will be roughly proportional to r2/R2, where Rs 1s the distance from
the vehicle to the perturbing body. However, when the distance, R;, to the
central body is small compared to Ry (particularly when the earth is the cen-
tral body), dr may become proportional to rz/Rl. Since it is desired to
bound &r/R;, which is proportional either to r2/Rx® or r2/RiRs, it was
decided for simplicity to require

Ag S g =g

Qo

where R 1is the smaller of R; and Ry, and Ag and AR are input constants.®

The program in appendix D is arranged so that if either AQ or r/R
exceeds 1ts upper bound after a given integration step, the step size is halved
and the integration step is repeated. If both quantities drop below their
lower bounds, the step size is doubled for the next interval. Part of the
digital computer study discussed in the next section was devoted to the problem
of choosing values for the parameters Ag, Ag, A, and Ay which control the
value of hg.

SIf it is not desired to rectify every integration step, then a good
criterion is to rectify when r/R exceeds Ag.

10



THE DIGITAL COMPUTER STUDY

This section of the report presents the results of a digital computer
study used to evaluate the application of Danby's method outlined in the pre-
vious section. The first part of the discussion deals with the choice of
desirable values for the parameters Ag, Ap, and Ay and some of the data used
in establishing these values are used to illustrate the effects of round-off
error. It was found that A must be chosen on the basis of a trade-off
between speed and accuracy, and the second part of the discussion deals with
this trade-off and with the time required to invert Kepler's equation.
FPinally, Danby's method is compared with Cowell's method in terms of the time
and computer storage required to perform various tasks.

Choice of System Parameters

The first step in the numerical study was to determine desirable values
for the upper and lower bounds, Ag, AR, Ar, and Ay discussed earlier. These
bounds establish a band of allowable error for each integration step, but the
location of the actual error within this band is random. For example, the
position deviation, ¥, from the reference conic and the corresponding error
in T increase nonlinearly with time and the rate of increase also varies
along the trajectory. Sketch (b) illustrates how this can affect the accuracy
of the integration. Suppose the nth integration step covers the time from

r/R

Ag

Sketch (b)

to to ts so that the perturbation (shown in the sketch by the solid line)
from the reference conic, and hence the error due to nonlinearity, nearly
attains its maximum allowable value. Now consider a change in Ajp,. This
might affect the previous part of the trajectory so that the nth integration
step covers the time interval from t, to ts (dashed line) in which case r/R
exceeds AR, and hp 1s reduced. With hgy reduced the nth integration
step terminates at ts while the (n+l)th step (dotted curve) covers the time
from ts to ts. With the reduced value of hyp the perturbation and cor-
responding error due to nonlinearity remain much smaller than when the nth
integration step begins at to. On the other hand, while reducing hg

reduces the error due to nonlinearity, it increases the possibility of round-
off error. When the step size and corresponding perturbations are made quite
small, then part of the perturbation is smaller than the least significant

11



figure in the corresponding component of the conic position or velocity and
is lost as round-off error during rectification. (In fact, the perturbation
could be made so small that the conic position and velocity would not be
altered by rectification.)

In the interest of efficient use of computing time it would be desirable
to make the width of the error band zero and set the upper bounds to give the
maximum error consistent with the desired accuracy. If one attempts to
approach this situation by the use of upper and lower bounds which are nearly
equal, the program will back up an excessive number of times for step size
reduction. On the other hand, if the upper and lower bounds are too far apart
hp will be kept unnecessarily small. Thus it was decided to choose the lower
bound which would give the most efficient operation for each corresponding
upper bound and to use the latter parameters to establish the accuracy of
integration. The following paragraphs describe the method used in establishing
Ag, A7, and Ay and show the effect of round-off error on accuracy.

Choice of lower bounds.- To establish a reasonable value for Ag, a number
of transearth trajectories were computed with the step size adjusted only by
r/R. (Reasonably accurate results could be obtained by proper choice of the
initial step size.) Figure 1 shows Sy, which is defined as the total number
of integration steps including repeats for the reduction of hp, plotted as a
function of As/AR for various values of Ap. The value of Sp 1is propor-
tional to the integration time and thus is a measure of the efficiency of the
program for a given value of Agr; Sp 1s not extremely sensitive to AS/AR
for the larger values of AR, but as that parameter is reduced, a definite
minimum is obtained for a ratio of about 1/5. As a result of these data, Ag
was constrained to be 1/5 of the value of Ag for the remainder of the study.

With AS/AR fixed, it is now possible to determine a similar relation-
ship between A7 and Ay. In figure 2 Sy 1s plotted for the transearth tra-
Jectory as a function of AL/AU for various values of Agr and Apy. No opbtimum
value of AL/AU can be seen from these data, but it is clear that the smaller
ratios require an excessive number of steps. Likewise, most of the curves
flatten out or rise slightly for the largest ratio. These results imply that
A7, should be about 1/10 the value of Ay-

Choice of Ap.- Because of the randomness of the errors in integration
discussed previously, one integration is not sufficient to establish the accu-
racy associated with a given set of values of Ag and Ay and it is desirable
to obtain some estimate of the maximum likely error. In the trajectories used
for figure 2, it was found that for given valuvues of Ay and AR, the greatest
differences in terminal position and velocity usually occurred between tra-
Jectories having the maximum and minimum values of Ar,- For this reason the
only values of Ap/Ay used in determining Ay were 0.0l and 0.25. The val-
ues of AR and Ay were the same as those for figure 2, except for one addi-
tional value (0.01) for Ay. This set of trajectories was integrated with the
osculating conic computed in double precision because when single precision is
used the influence of Ay 1s obscured by round-off errors. The X component
X (see appendix B for the definition of the coordinate system) of the termi-
nal position deviation from the Cowell solution for these sets of trajectories
is plotted in figure 3 as a function of Ay for different values of AR. The

12



X component comprises most of the deviation for this particular trajectory
and was used to preserve sign information. The results for the single-
precision reference conic are also presented for use later in the discussion
of round-off error.

Since the use of double precision essentially eliminates round-off errors,
the errors in these solutions must be attributed to nonlinearity and inaccu-
racies arising from the use of Simpson's rule. For AR < 10™* the deviations
of the solutions for Danby's method (double precision) from the Cowell solu-
tion are always less than 0.5 km. The question of a "correct" solution when
the deviations are so small is somewhat nebulous and neither method can be
considered as more accurate than the other. A considerably more detailed
study of both Cowell's and Danby's methods would be required to resolve the
accuracy question further, and this study was not made since these results are
satisfactory for navigation and guidance.

The lack of an absolutely correct answer does not prevent the use of
these data in establishing the effects of various error sources and determin-
ing a reasonable value for Ay. For the two smallest values of Ar it is
evident that reducing Ay from 0.2 to 0.1 improves the accuracy of the solu-
tion, but further reduction has negligible effects. The same trend is also
seen in the curves for Ap = 10'4, but it is obscured by increased spread
between the solutions for maximum and minimum Ay, that results from nonlin-
earity. On the basis of these results it was decided that the values of Ag
should be set at 0.1 for best accuracy and efficiency.

Effects of round-off errors.- We now compare the results of the single
precision computations (of the reference conic) with those of using double
precision in order to assess the effects of round-off error. The double and
single precision solutions corresponding to the same combinations of Agr, Ay,
and A used identical sequences of hp over the entire trajectory. For
this reason the perturbations computed at each step for the two solutions are
nearly the same, and the terminal deviation of the single precision solution
from that for double precision must be attributed mainly to round-off.

The differences between these curves are within the accuracy limits of
the Cowell integration for most of the trajectories, but a definite inaccuracy
due to round-off is evident for all single precision solutions with Ap=2x1075
(fig. 3(a)). On the other hand, when AR 1is increased to 2x10~% (fig. 3(d)),
the single precision results are more accurate than those for double precision.
This indicates that for AR = 2x107% the errors in the perturbations resulting
from nonlinearity have become comparable to the least significant figure of
the single precision conic position or velocity. In this case the part of the
perturbation lost in round-off is entirely erroneous so that the round-off
"errors" sometimes improve the accuracy.

Consequently, it appears that by the proper choice of Ay and AR, it is
possible to cobtain good accuracy without resorting to double precision. How-
ever, in the vicinity of the centers of attraction, the constraint on A
reduces r/R well below the value of AR because of the rapid change in the
transition matrices mentioned earlier. The round-off errors caused by this
reduction in step size are evident in the curves for figure 3 when Ay = 0.01.
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This round-off error has no significant effect in the transearth case (if
Ay > 0.01). TFor the translunar case, however, the round-off errors for
Ay = 0.1 are large enough to cause sizable errors.

This phase of the digital computer study resulted in the choice of con-
stant values of 0.2 for Aq/Ap, 0.1 for Ap/Ay, and 0.1 for Ay. The next data
to be presented will show how, with these parameters fixed, it is possible to
establish a trade-off between speed and accuracy by changing the value of AR'

Accuracy and Integration Times

Using the values of Ag, A, and Ay determined in the previous section,
it 1s now possible to consider the trade-off between integration time and accu-
racy. It should be pointed out that the integration times to be presented
here were obtained from a 7094 library clock subroutine which has a minimum
measurable time increment of 0.6 second.

Accuracy and integration time for transearth case.- The integration times
for the transearth trajectory are plotted on figure 4 as a function of A for
both single and double precision solutions. The position deviations of these
solutions from the Cowell results are also presented to give an indication of
the trade-off between accuracy and integration time.* The velocity deviations
in m/sec are nearly the same as the position deviations in km and have been
omitted. Note that very good results are obtained for Ap < 10™* and the
integration time is about 5.5 sec for gingle precision and 6 5 sec for double
precision. Some time can be saved at the expense of errors in the order of 1
or 2 km (and m/sec) by raising Ar as high as 5xlO . It is doubtful whether
one would wish to use higher values of AR because of the rapid rise in error
for a very small decrease in integration time.

Accuracy and integration time for translunar case.- Figure 5 presents the
integration time and position and ve1001ty deviations for the translunar tra-
Jjectories using the same values of Ay, Ar, and AR as for the data of fig-
ure 4. The error in the single precision solution due to round-off is greater
than 5 km for all values of Ar. The results for the double precision case
are essentially the same as for the transearth trajectory, but the deviation
from the Cowell solution for small values of AR is slightly larger for the
translunar case. This result probably arises from the initial velocity being
used differently in the two programs. Since the initial velocity is much
larger for translunar injection, the last binary digit represents a velocity
sufficlent to produce position deviations of the order of 0.5 km at the moon.
The corresponding deviation for the transearth case is about 1/L this amount.

4The interaction of various parameters and initial conditions sometimes
causes the cancellation of errors. Such cancellation produced unrealistically
small errors for the two largest values of Ar in the single precision case
and for AR = 5xlO'4 in the double precision case. ZFor this reason the posi-
tion deviations given in figure U4 for the single precision cases are the max-
imum encountered in the data for figures 2 and 3 with Ay set to 0.1, while
the one point for double precision is omitted.

1L
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It was found that the larger errors in the single precision case arise
because near the earth the upper bound on A produces very small step sizes,
hence, very small perturbations which are mostly lost during rectification.
This difficulty could be remedied by taking several integration steps between
rectifications, but it was pointed out earlier that this procedure if done
over the entire trajectory requires excessive integration times. Single pre-
cision could be used efficiently if the program were made to take several
integration steps between rectifications near the centers of attraction and
to rectify every integration step elsewhere. The logic and computations for
this procedure would require more additional storage than the use of double
precision, but there might be a small saving in integration time.

Time requirements for iterative solution of Kepler's equation.- It was
pointed out earlier that one of the big advantages of Danby's method over
others for space navigation is the ease of restarting the integration. If the
integration is to be stopped precisely at a given time in order to process
observational data, an additional computation, namely, the inversion of
Kepler's equation by iteration, is required. The computation time required
for this iteration will be different for each individual solution, but some
representative values were obtained as follows: The initial conditions for
the translunar trajectory were used as a starting point, and the initial
increment of eccentric anomaly was set at 0.1 radian. The program was
required to find the change in eccentric anomaly corresponding to a time
increment of one hour to an accuracy of one part in 107 (i.e., to 0.00036 sec
in this case). The time for 100 solutions was measured, and the process was
repeated for transearth injection. The same data were also obtained to an
accuracy of one part in 10® and all the results were presented in table I.
The data for the higher accuracy were computed using double precision because
when dt/d6 is small the accuracy of one part in 108 cannot be achieved with
single precision. The accuracy actually needed remains to be established, but
one part in 107 should be ample for most applications. Even an additional
order of magnitude in accuwracy does not require an excessive amount of compu-
tation time.

Comparison With Cowell's Method

Two Cowell programs were used for comparison with Danby's method. Cowell
program A computes only a single trajectory (no transition matrices) while
Cowell program B computes the identical reference trajectory plus the transi-
tion matrices. All programming for Danby's method, except for subroutine for
multiplying matrices, was done in the Fortran IV computer language but could
probably be done more efficiently in assembly language (MAP), commonly called
machine language. On the other hand, the Cowell integration subroutine, which
comprises nearly half of Cowell program A and over l/h of Cowell program B, is
written in machine language.

It should be pointed out that the navigation and guidance task requires
the integration to be stopped frequently for the processing of observed data
and for the computation of several velocity corrections. These operations
require the use of the transition matrices so that it is logical to compare
Cowell program B, including an appropriate number of restarts, with Danby's
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method. However, it is of interest to know the requirements of various opera-
tions so that data for comparison of the performance of the following tasks
have been obtained.

(l) The integration of a single trajectory without intermediate restarts.

(2) The computation of a trajectory and its associated transition
matrices without restarts.

(3) The computation of a trajectory and its associated transition
matrices with restarts at appropriate times to simulate a naviga-
tion problem.

The problem of computing velocity corrections is quite complicated and
has been left for a future study except for the following cursory examination:
Danby's method inherently includes compubting of the two-body transition
matrices. These matrices are known to be accurate enough for use in trajectory
determination, but introduce large errors in velocity corrections computed at
great distances from the terminal point. There are several pcssible ways of
correcting for this inaccuracy, including the use of iteration. TIteration
would sacrifice some of the speed advantage of Danby's method over Cowell's,
but would eliminate the need for a guidance reference trajectory. (Such a
reference trajectory, discussed in reference 7, is correct from injection to
the terminal point and should not be confused with the reference conics of
Danby's or Encke's method.) Thus, some of the speed of the Danby integration
would be traded for a reduction in storage requirements. Other possibilities
include the computation of the transition matrices by the method of refer-
ence 5, compensation for the effects of perturbations on the transition
matrices (ref. 8), or the use of precomputed two-body aim points.

Time requirements.- Cowell program A requires about 18 sec, exclusive of
computer output time, to integrate the transearth trajectory and 17 sec in the
translunar case or about 2.5 times the requirement for equivalent accuracy
using Danby's method. Cowell program B requires about 43 sec for the same
integration, that is, about 6.5 times more than is required by Danby's method.
The time requirements resulting from a large number of restarts will be dis-~

cussed later.

Storage requirements.- The program using Danby's method and single preci-
sion throughout requires a total of 2775 words of computer storage of which
2398 words are program and 377 are data. These figures do not include the
Fortran monitor system or the subroutines for obtaining the ephemerides of the
sun and moon. The ephemerides computation, which is the same for both methods
of integration, requires about 1700 words of storage. Since it is known that
this requirement can be reduced by about an order of magnitude (by use of a
more specialized method), it has been eliminated from comparison. When the
osculating conic is computed in double precision, the storage requirement
increases by 72 data words for a total of 28L9.

For comparison, Cowell program A requires 2568 words of storage of which
237 are for data, while Cowell program B requires 4172 words, of which 814
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are for data. Thus, when used as part of a navigation system, Danby's method
requires about 1/3 less storage than the Cowell program.

Effects of restarting.- Cowell program B and the single precision version
of Danby's method were modified slightly to allow the integration to be
stopped and restarted. The transearth trajectory was then integrated with
each program, the integration being stopped and restarted at 45 times which
was considered sufficient for making observations for trajectory estimation.
The resulting change in terminal position was 0.02 km for Cowell's method and
0.34 km for Danby's method (using Ap = 1074, Ay = 0.1, and A, = 0.01). The
integration time for the Cowell program increased to about 2.4 min,® while
that for Danby's method increased to about 8 sec.

The data in table I indicate that 45 additional solutions of Kepler's
equation contribute no more than about 1 sec of the additional integration
time for Danby's method. This figure is confirmed when it is noted that the
total number of integration steps, including repeats for reducing step size
or stopping at the desired time, is increased from 83 to 126. The total num-
ber of integration steps could probably be reduced by the use of additional
program logic. However, the integration time is still small, and it is doubt-
ful whether this complication is worthwhile unless a considerably greater num-
ber of observations is to be made.

Purther improvements for use in space navigation systems.- For the sample
navigation problem just considered, it has been found that Cowell's method
requires about 17.5 times as much computing time as Danby's method. The
Cowell program can be modified to reduce this factor to between 8 and 10 at
the sacrifice of accuracy. Likewise, the integration time for Danby's method
could probably be reduced further by programming improvements including the
use of machine language. However, in the particular problem considered, it is
known that the integration time required by Danby's method is no greater than
the time required to process the data from 45 observations. TFurther investi-
gation is needed to establish whether the complete navigation system can best
be improved by a more refined integration method or by more efficient data
processing.

CONCLUDING REMARKS

The data presented here show that for integrating a single reference
trajectory and computing the associated transition matrices Danby's method
requires only about two-thirds the storage required by Cowell's (program B)
method and about one-sixth the computing time. If the transition matrices are
omitted, the storage requirement for Cowell's method is slightly less than for

S0ther Ames programs using the Cowell integration for simulation of
guidance and navigation systems (e.g., see ref. 7) use fixed step mode between
those observations which are scheduled at reasonably short intervals. These
programs require less integration time than the above figure, but the stops
for observations result in terminal errors of about 6 km for this number of
observations.
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Danby's method, but the integration time is still about three times that
required for Danby's method. The accuracies of the two methods are (as far as
could be ascertained) comparable and are satisfactory for space navigation.

The introduction of a number of stops and restarts to allow for estimation
of the trajectory from observed data increases the time required by both
methods. However, the increase for Cowell's method is so great that in the
sample problem considered, the Cowell integration required 17.5 times as much
computing time as Danby's method. The restarts have little effect on the
accuracy of either solution, but it is possible to reduce the integration time
for Cowell's method by a factor of about 2 at the expense of fairly large ter-
minal errors.

A suitable Encke program was not available for comparison. However,
Encke's method requires the solution of the same conic equations, while the
computation of the perturbations is more complex than for Danby's method.

Also, since Encke's method requires the solution of a set of differential
equations for the perturbations, a complex procedure is required to restart the
the integration. On this basis, Danby's method can be assumed to be at least
competitive with Encke's, particularly if the transition matrices are needed.

Finally, while the equations for the conic solutions and the transition
matrices are rather complex, they require only a knowledge of the calculus and
elementary matrix theory for their formulation. Furthermore, no detailed
knowledge of numerical methods is required to set up the quadrature of perturb-
ing accelerations. For these reasons, Danby's method offers a simplicity and
versatility which seems particularly well suited to engineering applications.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., June 21, 1966

125-17 -05-01-21
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APPENDIX A
EQUATIONS FOR THE CONIC TRAJECTORY AND TRANSITION MATRICES

Laplace's f and g formulation, which is summarized below, was used to
calculate the reference conic. (See ref. 9 for a detailed explanation.) Fol-
lowing the discussion of the reference conic, the derivation of the equations
Tor the transition matrix is presented. This derivation is intended to cor-
respond as closely as possible with the program listing (SUBROUTINE PARTIS)
given in appendix D and for this reason may seem rather awkward from a mathe-
matical point of view. Reference 10 presents different formulations of the
equations for the conic trajectory and the transition matrix which are valid
for all conics, while the ones given here break down in the parabolic case.
The formulas in reference 10 may also require less computer time and storage
and their use should be considered in future applications.

The equations for the reference conic_are based on the assumption that
the position and velocity vectors, R, and Vs, respectively, at time t, are
given. Then at time ¢t

R fR, + gVg

(A1)

V = Ry + &V,

The following set of formulas (eqs. (A2) through (A9)) for the scalars f, g,
f, and § and appropriate version of Kepler's equation are given by Pines® in
an unpublished work.

Fo1 - Ri o (A2)
O
|a]”
a
g = At - m 1 (83)
. '/HIaI
£ = - R R fa (AL)
|a| Ro
g:l——R—f2=l—R_(l'f) (AS)
R Ro ﬁo * \_IO
— = fs + —— 4 + —— T3 <A6)
lal 7% | Julal
3 — —
At = |2 GlJrR_o_ferRo_'__V_Qfg (A7)
B |2 ’ulal

1Pines, Samuel: Analytic Mechanics Associates, Uniondale, New York.
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where p 1is the product of the universal gravitation constant and mass of the
central body. The semimajor axis, a, is given by

This equation is valid for both elliptic and hyperbolic orbits and gives a
negative value for a in the hyperbolic case.

The definitions above are valid for both ellipses and hyperbolas, pro-
vided fj are defined as follows:

(1) For elliptic orbits 3
fi =6 - sin @
fs =1 - cos 9

f (48)

fo = sin 6

fg = cos 6

J
(2) For hyperbolic orbits
N
fl = Sinh 9 = 9
fo = cosh o -1
) (19)
fa = sinh 6
fa = cosh 6 J

Here 6 is the change in eccentric anomaly (E - Egp) or in hyperbolic anomaly
(F - Fo), whichever is appropriate.

A series is used for evaluating f3; and fo; then fg and f4o can be com-
puted by use of the defining equations. The series for f; and fs are given

by < n+l h
. Z |a|

2nt1
(n + 1)

w <i>n+192n
o z 2]
2 2nt )
m=1

The factor (-a/|a|) automatically changes the series from circular to hyper-
bolic functions. This formulation is similar to the one used in reference 10
(Herrick's variable), but is not valid for the parabolic case.

f (A10)
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If equation (A7) is to be solved for the value of 6 corresponding to a
given At, it is necessary to use an iteration. The iteration method used in
this study can be understood best by examination of the listing of SUBROUTINE
IAPICE in appendix D and will not be discussed here. .

The transition matrices were obtained in closed form by differentiating
equations (Al) with respect to the initial components of position and velocity.
For convenience, the following notation is defined:

R SR

= 2 =

dRo Vo 3x3 matrices of first partial derivatives of components of

_ _ R or V with respect to the components of Ry and V,

ov ov

3R, AV,

VR gradient operator with the components of position as the inde-
pendent variable

VV gradient operator with the components of velocity as the inde-

pendent variable

Using these definitions, we can write the transition matrix in partitioned
form as

AR
i % Rg Vo
o = = (A11)
oV OV
= Pal RS ST,
From equation (Al) )

= T = T
¢, =1 T+ R(vgt) + Vi(vge)

= T = T

o, =g I+ Ro(VD)" + Vo(v,8)
2 o\'y o\Vy& > (A12)
. —_ .III p— .T

Py =T I+ RO(VRf) + VO(VRg)

T

. — . T — .
¢, =8 T+ Ro(wf)™ + Vo(wye)

where I 1is a 3x3 unit matrix.
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From the definitions of the f5 it can be seen that

b

df, = fo 9
dfs = 3 do ( )
Al3
dfs = f4 A0 >
dfy = =2 5 a0
|al
Using equations (Al3), one can write
'Ial a® Ro
v = I3V + == v f
R, 1o 0 R P > (ALL)
Vg = ‘ul oVl - 1V / (A15)
. £ ; T
vf = - R R T4V0 + ‘/HI f3VRO v@ulal - 52— (VR)TR (A16)
Julal
. Ro 1 -f = . Ry =T, = .
VE = go VE - T o + o3 (1 - ©)(VRHR (A17)

The notation ¥R is used here to mean OR/OR, or OR/OV, whichever is
appropriate. Finally, if At 1is held constant, then

3 5/ g R - 7
v(At) =0 = l TB ALY <: .kiL_ i lﬁl_. Fo b —— Fy 4 2 o) VO

a g " =] Julal

|a]” R, 1al® (R, . T,
+ fSV — + fs v/
" =] voE Julal
nla
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This expression can be solved for VO to give

3 flal® R R_.V
-——% ARY) lal + lai fav o + ng °_0
l H la! Ju‘al

|

(A18)

1
)

lal® ®_
Hal

For convenience in programming, two one-dimensional arrays labeled @ and C
are defined. The part of the Q array which depends only on the values of

Ro and V, (i.e., not on At or 9) is computed in SUBROUTINE CNSTNT while the
remainder is computed in SUBROUTINE TAPLCE. These arrays are defined below in
tabular form. Note that the elements are given in numerical order and not in
the order in which they are computed in program.

Index Q array C array
1 fy C15(Ca - QeaCi7Q2) + Qu7Qz%/Qeuie
2 o QeoQ7017Q2
3 fa Q17(QaCig - 2C17Q2)
b Ta C1sCs - Q4Q7/Qeis - Q7/Qz:
5 f Q2Qa@1/Qe s
6 g Q4C18/QeQ13016 + Q7C1-
7 f -Q7/Q1s
8 g CisCio + Co
9 Ro Q14Q11Q18Q22/Q16
10 a Q4(Q2C1s - 3Q1C17)
11 lal CiCie - (1 - Qs)/Qe@us
12 H C=Cis
13 1/Julal C3Cis
1l Jlal®/u Ro(l - £)/R% = (1 - Qe)/us
15 R B/Ro® = Q12/QoQo1
16 R Ro/R = Qo/Qie
17 lal/Ro a/p = Quo/Qz
18 Ro/lal Q17C16C17(3Q1 + Q1eQs + 2Q15Q2)
19 (ﬁo'\}o)/\/m
20 Vo2
21 RoZ
22 -a/|al
23 v
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It can be shown that formulas for the gradients in equations (AlL) through
(A18) which apply for both elliptic and hyperbolic orbits are as follows:

V<k°>—<'2a Q22 l>§
R\lal/ ~ |a|R2 ;[R Q21 * Qg1 ) o

-2aR, _ —
v‘,(ii"—) - —2 7, = -2@eC17V0
lal lalp
ajulal = Qo =
Vel R, = ———— R
R< ulal) R3 ©  Q3QgQe1 ©

a /'l-si Vo = QuoQ11Q13V,

3Q14C15C1 7R,

P
3

<
TN

E&
ga;w

3
a 3a [lal” = —
VV .I_|_> T —T VO = 3@Q14Cy 7VO

R. . 7V 1 = a(Ro+ Vo) - T R
0 o\ _ -——— R = QuaVy - Q19C15017Ro

v - 7
R
Jilal Jolal &S Jfulal 0

a(I_{o Vo) _

= Q13§O - QuC17V,
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oR R, . V RZ _
vRe=-_a§|""l 3 st - =95 - 22 g+ —2 5 Ry
o R |al |al ,/plal a|a|
1 lal =
- 2y
plal B °
Qs \ = Q11Q12Q2 =
= ~-|C R, ~ ————V
< 15018 + Q9Q1;> ° Qe °©
e} a,|a.| 38 2Ro ﬁoavO 1 |a|
R o= -2 3 At - —Q fg - -2 O py - a1
L R <i lal® lal J ulal 2'o lu|a| R
—  Q11QaQ2 _
—'ClSC' Q o)
16

Substitution of the gradients into equations (AlL) through (ALl7) gives

VRS

Vv

1]

Q17Q2 7

-Q17QaVR0 - 2Q17C15C17QzR, + % fo

Cl_R-o + Cgvo

~Qu7QaVB + 2Q172Q2Q18C17V, = C2R, + CalVy

-Q14Q2VR0 3Q1Q14015017§o = Ceﬁo + Csvo

-Q14Q2Vy0 - 3Q14C17@V, = CeRy + CioV,

25



T

. = oR
VRY = Q13Q9Q16 % - R + Q702sCa7Ro + C7<t ;)

— —_ T_
= C4.RO + CsVO + C;Py R

. -Qa = T = = T
\ = — V¥, + Q7C1 7V, + CP5 R = CsR + CgVs + CP5 R
Vf Q13Q5Q16 v 7o e °© e'o e

. (1-Qs)= T— T
VRg = Clszf - — R + Cl4CP1 R = CllR + ClZV + Cl4cpl

Qelie

. T— — — T_

V& = CieWyf + C1492 R = C12Ro + CiaVp + C14P2 R

Finally, substitution in equations (A2) gives

_ T _ T
@, =TT + Ro(VRe)™ + Vo (vRe)

-, T _T _, _T _

= T + Rg(CiRy + CaV, ) + Vo(CaRp + CoVg™)
= == T = = =T
= T + (C1Ry + CaVo)Ry + (CoRy + CoVg) Vg

- T - ,— T
Pp = g + Ro(Vyf)™ + Vo (Vys)

= =5 T = = = T
= gT + (CoRy + CoVo)Ry + (CaRg + Ci1oVe) Vg

Oy = FT + ﬁ&(ij) + To(vp8)*

. S - =T — =T — =T
= T + CaRRo + CsRoVgy + C11VeRo + C12VeVo

b CRED, + CraToR Oy

— — T — — -
= fT + (CaRo + C11Vo)Ro + (CsR, + Ci12Vy)V,
= — =T
+(C7Rg + C14Vo)R @1
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Py

— . T — < T
gLl + Ro(vyt) ™ + V (wyé)
— — =T == ==T
g + CSﬁOROT + CeRoVo + CizVeoRo + CiaVoVo
= — =T
+ C7ROR CP2 + Cl4VOR Py

= = =z T = = =T
gT + (CsRg + clzvo)RoT + (CeRgo + C13Vo) Vo + (C7R, + CraVo)R 9o
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APPENDIX B
FEQUATIONS FOR PERTURBING ACCELERATTONS

The perturbing accelerations are computed on the basis of the four-body
equations of motion given in reference 7. The coordinate system is Cartesian
with the X axis positive toward the vernal equinox, the 7 axis parallel to
the earth's polar axis,and the Y axis completing a right handed orthogonal
set. When the vehicle is within 66 ,000 km of the moon a selenocentric system
is used while otherwise it is geocentrlc. The vehicle's equations of motion
in the geocentric system are as follows:

5Z2>:(__l-£n_ _ _ lJ.me _ |J~S(X - XS) _ usXs
[l ’ J<%Re> <’ VS (% - %) R, 53 Ro2

X =
.. 1 Yy He(Y - Yg)  pgY
¥ = 1+ Q oy -y - RE s B s
R R2/| N3 R, A, R.®
5 - % [l + J<%Q>2<é 5Zé>} bu(Z - Zy) HmZm ps(Z - Zg) _ HsZg
3 Re R.2 N Ry NS Rg®

where (Xm, Yms, Zm) and (Xg, Ys, Zs) are the positions of the moon and sun,
respectively. Other quantities are defined as follows:

Re = JX2 + Y2 + 72

R =~/iﬁ2 + Yo+ Zp®
Ry = [%2 + Y2 + 252

A =~/z% - Xm)g + (Y - Ym)2 + (2 - Zp)

2

2

=~/Z§ - Xs)2 + (Y - Ys)2 + (2 - Zg)

3.986031x10° km3/sec®

He

um = 4.8938260x10° km"/sec®

28



He = 1.3255x10% km>/sec®
JRgS = 6.6043956x10* kil

where RQ is the mean equatorial radius of the earth.

The three components of the vector U of perturbing accelerations
(eq. (2)) are obtained by subtracting the first harmonic term (the two-body
portion) of the acceleration from the total. Thus, in geocentric coordinates:

g
o
|

B
s
4

Us

n
N
+

u6 Res

In selenocentric coordinates, the terms involving J are omitted and
X, Y, and Z now denote the vehicle's position with respect to the center of
the moon. In this case

Hu

Ay

. u Y
us = Y + —
A

. W2
Z+-—m—-3
Am

i

Us

(Note that in the program listings the position vectors of the moon M
and the sun PS and the velocity vector of the moon VM always refer to
geocentric coordinates.)
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APPENDIX C
SIMPSON'S RULE FOR UNEQUAL TIME INCREMENTS

It is desired to integrate the transformed forcing function y over the
time interval from to to tp. We assume that each component y; can be fit
over the interval with an equation of the form

y = as(t - to)2 + a(t - ty) + ag (c1)
The subscript, i, indicating the component of y has been omitted and equa-

tion (Cl) may be taken as representing any of the six components of y.

Let %, be some time between t, and tp and define

hy =ty - bg

].’l2 = tz - tO
? (c2)
Yo = v(tg)

yi = y(t1)

vz = y(t2) ;

then equations (Cl) and (C2) can be combined to give

1
Yo = 8o
y1 = aphi® + a;h; + ag k (¢3)
Yo = ash 2+ aho + a
2 oho 1ho o ]
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The coefficients of t in equation (Cl) can be found by the simultaneous
solution of equations (C3), and are

ao=yo

(yi - yo)h22 ~ (y2 - Yo)h12 $

a1 = (ch)
hihs® - h;Zhs
(y2 -~y )m - (71 -y )hs
82 = . TF T o
The integral of equation (Cl) is

t2 h2 a 3 a

f y at = f (agh® + ayh + a )dh = _35 hot + ?l he® + aghs  (CH)
% o)
O

Substitution for the aj from equations (CL) gives

hihs2 —-hﬁ?hz

ftz hs3 [(yz - yo)h - (y1 - Yo)hz:\ hp? [(.—Yl - yo)ha® - (y2 - YO)hlz]
y dt = - + — -
to

"3l n 2 hihz® - hi2hs

+ y0h2 (06)

Collecting terms in changes equation (C6) to
In

ftg s ay - Peha(@hz - 3n1)ya + ha®y1 + ha(3na - ho)(he - i)y
t

(cm
0 6hi(hz - hi)

The coefficients of the 1y, are functions only of time and are valid for each
component of y. They are stored in the AI array in the program.
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APPENDIX D
PROGRAM LISTINGS

The following pages present the Fortran IV listings of the main program
and subroutines used for Danby's integration method. The single precision
version is presented here, but the program is set up for easy conversion to
double precision computation of the osculating conic, to more than one inte-
gration step between rectifications, and for inclusion in a complete guidance
and navigation program. For this reason all common data are stored in
"labeled common,” and storage is provided for a number of superfluous vari-
ables. Comment cards have been inserted at appropriate points to explain the

operation of the program.

In addition to the subroutines for which complete listings are provided,
the program uses five general purpose subroutines. Only enough listing is
presented to explain the use of these subroutines.
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$IBFTC TGO503 NOREF

CTGO503 DANBY INTEGRATION PROGRAM J D MCLEAN
C USES SUBROUTINES TGO50B,y Dy Sy Ty Uy Vs Wy Xy AND Y

OO0

DIMENSION GP(6)4ED(6),DELR(3),DELV(3)4GC(643)yDELX(6)4XPREV(6),
IDELYP(6)4DD(6) 4 AI(3)4DELY(6)sH(3)AP(646)4X(6), XPRES(6),
2XZERO(6) yKK(6) ¢ VARLST(14)4TX(3) 4RR(3)3VV(3)4AE(6,46)

COMMON /DNBY/ RZERO(3),VZERO(3)4PM(3),VM(3)4Q(23)4PS(3)4G(3)4K(6),
1ACCREC,ACCUI,ACCLI US,UE,UM,CJ2+yDELMsR 4V DELSyDM(3),TMSTOP,
2TIMEA, TIME,)CHOVER yHTyHEyRPRES(3) yVPRES(3),ESTOPyDELTE1AA(343,5),
BIPRINTAD(646) 3 ICYCLE, IMOON, ISUN,TMOON(32425),TSUN(4416),DE(3)

EQUIVALENCE (XZERO(1),RZERO(1)),(XZERO(4)4VZERD(1)),(DELX(1),DELR
1(1))y (DELX{4)4DELV(1)) 4 (XPRES(1)RPRES(1)) 4 (XPRES(4),VPRES(1))

ACCUMULATE TOTAL INTEGRATION TIME IN DOUBLE PRECISION
DOUBLE PRECISION TAPRS,TADP

DEFINITION OF VARIABLES

TS=STOP TIME

TA=TIME FROM INJECTION TO PRESENT

UE,UM,US = MU OF EARTH,SUN,MOON

HT=+1.0 FOR FORWARD INTEGRATION, -1.0 FOR BACKWARD
HE= STARTING INCREMENT IN ECCENTRIC ANOMALY

RR= POSITION VECTOR

VV= VELOCITY VECTOR

K(1)=-1 FOR MOON CENTERED COORDINATES, +1 FOR EARTH CENTERED
K(2) NOT USED

K{3)= LIMIT ON NUMBER OF PASSES THROUGH INTEGRATION LOOP
K(4)= ZERD EXCEPT WHEN COORDINATES ARE TO BE SWITCHED
K(5)= ZERO EXCEPT WHEN TRAJECTORY IS COMPLETED

K(6) NOT USED

DATE= JULIAN DATE OF START OF SUN~-MOON TABLES

DAYS= NOT USED

ACCREC= A SUB R == SEE TEXT

ACCUI= A 5SuB U

ACCLI= A SuB L

CJ2= J*(R SUB Q)#**2 -- SEE APPENDIX B

CHOVER = RANGE FROM MOON OF COORDINATE SWITCH

TI= INJECTION TIME

PS= POSITION VECTOR OF SUN

PM= POSITION VECTOR OF MOON



7€

OO O

[eER

200
111

901

810
902
203
904

905

DELTE IS TOTAL INCREMENT IN ECCENTRIC ANOMALY FROM LAST
RECTIFICATION

VM=VELOCITY VECTOR OF MOON

DELM= VEHICLE-MOON DISTANCE

AE IS TRANSITION MATRIX FROM START OF TRAJECTORY TO PRESENT

CALL CLOCK(TX)

FROM HERE TO STATEMENT 100 INITIALIZES PROGRAM FOR ONE TRAJECTORY
INTEGRATION

READ(54111) TSy TAZyUEI yUMIyHTISHEIg{(RR{I)sI=143),(VV{I)s1I=1,3)
FORMAT(3E16.8)

READ(5,901) (K(J),J=1,6)

READ(54111) DATE,DAYS,TIME,ACCREC,ACCUI 4 ACCLI CJ2,US,CHOVER
FORMAT(615)

TMSTOP=TS

TIMEI=TIME-TA

TIMEA=TA

TAPRS=TA

TADP=TA

UE=UE1

UM=UMI

HT=HTI

HE=HEI

DO 810 I=1,3

RZERO(I)=RR(I)

VZERO(I)=VVI(I)

WRITE(64902)TMSTOP, TIMEA,UE

FORMAT(1H1,y THTMSTOP=4D25.1646HTIMEA=,D2541643HHE=4D25,.16)
WRITE(64903) UM,HT,HE

FORMAT(1H 43HUM=4D25,1643HHT=4D25.1693HHE=4yD25.16)
WRITE(64904) (RZERO(I),1=1,3)

FORMAT(1H 42HX=4D2541642HY=,D254,16,2HZ=4D25.16)
WRITE(64905)(VZERO(I)},1=1,3)

FORMAT(1H 43HXD=yD25.16,3HYD=4D25.,16433HZD=9D25.16)
WRITE(64906)(K(I),I=1,46)




906 FORMAT(1HO,2HK=,615)
WRITE(64118)
118 FORMAT(1H=y5Xs5HTIMEA, 12Xy 5HX(KM) 312X s5HY (KM) 412X 45HZ{KM) 410X,y 10HX
1D(KM/SEC) s 7TXy LOHYD(KM/SEC), 7X410HZD(KM/SEC) +5X49HSTEP SIZE)
WRITE(6,119)
119 FORMAT(1H ,6Xy4HDELXy13Xy4HDELYy13Xy4HDELZ913X94HDELRy14Xy1HR,16X,
11HV,15X,4HDELM)
CALL MSLOAD(TMOON(1,51)4323TSUN(141)+49DATE,NOMPTS,NOSPTS)
CALL CLOCK(TX(2))
IMOON=0
ISUN=0
KERR=0
HEP=HE
ICYCLE=0
DO 10 I=1,36
10 AE(I41)=0.0
DO 11 I=1,6
DELX(I)=0.0
11 AE(I,I)=1.0

C BEGINNING OF INTEGRATION LOOP
100 DO 7 I=1,3
7 RPRES(I)=RZERO(I)
CALL MOON(TIME,PM(1)yTMOON(1y1)432,NOMPTSsKERRy3HPOSyIMOON)
9 CALL SUNP(TIMEsPS(1)yTSUN(1,1),44NOSPTS+KERRyISUN)

8 CALL GVEC
C GVEC COMPUTES FORCING FUNCTION

DELMP=DELM
V=0.0
DO 6 I=1,3
6 V=V+VZERQ(I)=*2

V=SQRT(V)

C QUTPUTS TIME IN DAYS
TIMEB=TIMEA/86400.0

103 FORMAT(1HOJE164846E1Te83EL3e4/TELT48,15)

IF(K(5)) 221,221,200
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221

21

212
12

110
24

25
241

17

19

20

CNSTNT COMPUTES PART OF Q ARRAY AFTER RECTIFICATION
CALL CNSTNT

DO 21 I=1,3
GC(I41)=0.0

DELTE=0.0

ESTOP=1,.,0

TPRS=TIME

TAPRS=TADP

MA=1

ICYCLE=ICYCLE+1

IF(ICYCLE-K(3)) 110,200,200

GO TO (24417417),4MA

K{5)=0

EACH TRANSFORMED FORCING FUNCTION, Y IN TEXT, IS ONE COLUMN OF GC
STORE INITIAL VALUE OF G IN FIRST COLUMN OF GC

DO 25 I=1,3
GC(I+3,1)=G(1I)

EE ONE STEP

COMPUTE NEW 2 BODY POSITION, RPRESy AND VELOCITY, VPRES
CALL LAPLCE

NSITION MATRIX, AO, FROM RECTIFICATION TO PRESENT

H(MA-1)=Q(23)

TAPRS=TADP+Q(23)

TPRS=TAPRS+TIMEI

CALL SUNP(TPRS4PS({1)yTSUN(141)444NOSPTSsKERR»ISUN)

CALL MOON(TPRS,PM(1),TMOON(1l,1),432,NOMPTS,sKERR,3HPOS,yIMOON)

COMPUTE NEW FORCING FUNCTION
CALL GVEC



LE

22

230

13

213

14

18

30

29

TRANSFORM G TO LAST RECTIFICATION TIME AND STORE IN GC

CALL XPYXM(G(1)9AA(1y191)9GC(49MA)31434393,1)

DO 22 I=1,3
G(I)=-G(I)
CALL XPYXM(G(1)yAA(14142)4GC(LyMA)s1,434343,1)

TEST WHETHER GC ARRAY HAS BEEN FILLED
GD TO(2004230,13)4MA

MA=3
GO TO 12
IF(K(5)+GT.0) GO TO 30

TEST WHETHER STOP TIME HAS BEEN EXCEEDED, IF SO
TST=HT*(TMSTOP-TAPRS)
IF(TST) 14,18,30

COMPUTE EXACT VALUE OF HE TO STOP AT CORRECT TIME
Q(23)=TMSTOP-TIMEA

ESTOP=0.0

DELTE=0.0

CALL LAPLCE

HE=(ESTOP-DELTE) /2.0

K(5)=1

GO TO 241

K(5)=1

COMPUTE AI ARRAY -- SEE APPENDIX C
SS=H(2)~H(1)

AT(1)= SSHH(2)%(3,0%H(1)=H(2))
AT(2)=H(2)%%3
AI(3)=H(1)*H(2)%(2.0%H(2)=3.0%H(1))
SS=SS*H(1) %640

DO 29 1=1,3

ATI(I)=AI(I)/SS

SS=H(2)/2.0
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229

40

43

243

449
450

451

452

41
251

GP= INTEGRAL OF TRANSFORMED FORCING FUNCTION
CALL XPYXM(GC(1y1)9AI(1)4GP(1)46939345191)

COMPUTE DG == DG= A SUB Q IN TEXT
DO 229 I=146
ED(I)=GP(I)=(GC(I41)+GC(I,43))%SS
DD(I)=GP(I)~H(2)*GC(I,1)

CALL ROOT(DD(1),DR29DDMy1)

CALL ROOT(DD(1),DV2,DDM,y4)

DG=0.0

DO 40 I=1,3

DG=DG+(ED(I)*%*2) /DR2+(ED(I+3)%**2)/DV2
TST5=DG-ACCUI

TST6=DG-ACCLI

IF(TST5.GT.0.0) GO TO 41

DO 243 I=1,46

DELX IS USED ONLY WHEN NOT RECTIFYING EVERY STEP
GP(I)=GP(I)+DELX(I)

DELY= PERTURBATION STATE VECTOR AT PRESENT
CALL XPYXM(AQ,)GPsDELY369696451,1)

CHECK CONSTRAINTS ON MAGNITUDE OF PERTURBATION
CALL ROOT(DELY(1),DRSQyRDEL,1)

IF(R-DELM) 450,450,451

TST7=RDEL/R-ACCREC

TST8=RDEL/R~0.2*ACCREC

GO TO 452

TST7=RDEL/DELM~ACCREC
TST8=RDEL/DELM-0.2%ACCREC

IF(TST7.LE.0.0) GO TO 247

THIS SECTION USED WHEN STEP SIZE MUST BE REDUCED
HE=HE/2.,0

K(5)=0

DELTE=0.0

GO TO 241
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250

51

60
61

62

247

33
37

38

UPDATE TIME AND AE AFTER RECTIFICATION
K(6)=1

DO 51 I=1,6

DELX(I)=0.0

TIME=TPRS

TADP=TAPRS

TIMEA=TAPRS

CALL XPYXM(AOyAEyAA64964649641)

DO 61 I=1,36

AE(I41)=AA(I,41,1)

RETURN TO BEGINNING OF LOOP UNLESS TRAJECTORY IS TO BE TERMINATED
IF(K(5)eLE.O) GO TO 100

CALL CLOCK(TX(3))
WRITE(642) (TX(I)yI=143),ICYCLE
FORMAT(1HQ,17HEND OF TRAJECTORY y5Xy2HTX943E17845X96HICYCLE,IS)

WRITE (69103)TIMEBy (XZERO(J)yJ=146)+HEs (DELY(J)9yJ=143),RDEL4R4V,DE
1LM,ICYCLE
GO TO 100

CHECK FOR COORDINATE SWITCH AND ADJUST HE SO THAT DELM WILL LIE
WITHIN 5000 KM OF CHOVER

TST2=K(1)

TST2=TST2%(DELM-CHOVER)

K(6)=0

TST3=ABS(TST2)~ 5000.0

IF(TST2.LT.0.0) GO TO 39
IF(TST3.GT.0.0) GO TO 37

SHFT=K(1)

GO TO 38
RATIO=ABS(DELMP~-CHOVER)/ABS(DELMP-DELM)
HE=HE*RATIO

GO TO 251

K(4)=1

GO TO 47



39

45

47
48

52
53

54

55

CHECK WHETHER STEP SIZE SHOULD INCREASE
IF(TST6.GT«0.0) GO TO 47
IF(TST84GT+0.0) GO TO 47

HE=HE*2.0

THIS SECTION RECTIFIES CONIC AND SWITCHES COORDINATES IF NEEDED
DO 48 I=146

XZERO(I)=XPRES(I)+DELY(I)
DELMP=DELM

IF(K(4)) 2504250452

CALL MOON(TPRS,VM(1),TMOON(1y1),32yNOMPTS,KERRy3HVELIMOON)
IF(KERR.NE.O) GO TO 200

DO 54 I=1,3
XZERO(I)=XZERO(I)+SHFT*PM(I)
XZERO(I+3)=XZERO(I+3)+SHFT*VM(I)
K(4)=0

IF{SHFT.GT«.0.0) GO TO 56

K(l)=1

WRITE (6,4102)

102 FORMAT(1HO,59HTHE FOLLOWING SETS OF DATA ARE IN MOON CENTERED COOR

56
101

57

1DINATES)

GO TO 57

K(l)=-1

WRITE (6,101)

FORMAT(1HO,60HTHE FOLLOWING SETS OF DATA ARE IN EARTH CENTERED COO
1RDINATES)

HE=HEP

GO TO 250

END
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$IBFTC TGO50V NOREF
c SUBROUTINE LAPLCE J D MCLEAN COMPUTES TWO BODY POSITION AND
C VELGOCITY
SUBROUTINE LAPLCE
COMMON /DNBY/ RZERO(3)4VZERO(3)yPM(3)4VM(3)4Q(23)4PS(3)4G(3)4K(6),
1ACCREC,ACCUI ACCLI USyUE,UMyCJ2yDELM,R4V,DELS,DM(3),TMSTOP,
2TIMEA, TIME,CHOVER ¢HT yHEy RPRES(3)yVPRES(3)yESTOP,DELTE,AA(3,3,5),
3IPRINTyAC(646) 9 ICYCLEy IMOON, ISUNyTMOON(32,25)9yTSUN(4416)4DE(3)
c E IS INCREMENT IN ECCENTRIC ANOMALY
E=DELTE
EP=DELTE
DTP=0.0
EINC=HE

DD 15 I=1,20

C IF ESTOP IS ZERO KEPLERS EQUATION IS SOLVED TO GET DELTE FOR STOP
c AT CORRECT TIME, OTHERWISE OUTER LOCP IS OMITTED
IF(ESTOP) 948,49

8 E=EP+EINC

C KD=0 UNLESS EINC IS TO BE SUBTRACTED FROM E
KD=0
10 IF(E-EP) 9,14,9
9 Q(1)=0.0
Q(2)=0.0

C S IS A DUMMY VARIABLE
S=1.0

C THIS LOOP SOLVES SERIES FOR Q(1) AND Q(2) =- SEE APPENDIX A
DO 11 J=1,50
RN=J
RN=240%*RN
S= S*Q(22)*E*x*2/(RN¥(RN=1,0))
H=Q(22) %S
QZ=Q(2)
Q(2)=Q(2)+H

41 Q(1)=Q(1)+H*E/(RN+1,0)
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11

101

12

42

23

13

30

31
34

35

SERIES IS CARRIED OUT UNTIL LAST TERM DOES NOT CHANGE Q(2)
IF(Q(2)-QZ) 11,12,11

CONTINUE

WRITE (6,101)S

FORMAT(2HO,38HQ1-Q2 SERIES HAS FAILED TO CONVERGE S=,E15.8)

COMPUTE TIME INCREMENT
Q(4)=1.0+Q(2)*Q(22)
Q(3)=E+Q(1)*Q(22)
S=Q(14)x(Q(1)+Q(18)*Q(3)+Q(19)%Q(2))

IF NOT ITERATING FOR STOP TIME LEAVE LOOP
IF(ESTOP) 14423,14

TEST WHETHER TIME INCREMENT HAS BEEN FOUND TO 7 PLACES, IF NOT
TSTl= ABS(1.0-S/Q(23))=.1E-6
IF(TSTL) 14414413

TEST WHETHER TIME INCREMENT IS TOO LARGE, IF NOT
TST2= ABS(S)-ABS(Q(23))
IF(TST2)30,30,31

INCREMENT E AND REPEAT ITERATION

EP=E
DTP= ABS(S)
GO TO 15

IF E IS TOO LARGE AND KD=0 COMPUTE RATIO OF ACTUAL TIME INCREMENT
TO DESIRED ONE
IF(KD) 34,34,38

RATIO=( ABS(Q(23))-DTP)/( ABS(S)~-DTP)

IF RATIO IS LESS THAN O.1 MULTIPLY EINC BY 0.1 AND START AT
BEGINNING OF LAST INTERVAL

IF(RATIO-0.1) 35,35,36
EINC=EINC*0.1
GO TO 8
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36
37
38

39

15

102

14
24

25

43
100

16
33

IF RATIO IS GREATER THAN 0.9 MULTIPLY EINC BY O.ly SET KD=1 AND
BEGIN REDUCING E

IF(RATIO=0.9) 39,37,37

EINC=EINC*0.1

E=E-EINC

KD=1

GO TO 10

IF RATIO LIES BETWEEN 0.1 AND 0.9 USE LINEAR INTERPOLATION

TINC=TINC*RATICO
GO T0O 8
E=E

WRITE (6,102)TST1
FORMAT(1HO443HTIME ITERATION HAS FAILED TO CONVERGE TSTl=,E15.8)

IF ITERATING FOR STGOP TIME RETURN TGO MAIN PROGRAM
IF(ESTOP) 25424425

ESTOP=E

GO TO 33

COMPUTE NEw POSITION AND VELOCITY
Q(23)=S

ROA=Q(2)+Q(18)*Q(4)+Q(19)=Q( 3)
Q(5)=1.0-Q(17}%*Q(2)
Q(6)1=Q(23)=-Q(14)*Q(1)
Q(7)1==-Q{17)*Q(3)/(ROA*Q(14))
Q(8)=1.0-Q(2)/R0OA

Q(16)=R0DA*Q(11)

QU15)=Q(16)%=x2

DO 16 I=1,3
RPRES(I)=Q(5)*%RZERO(I)+Q(6)*VZERO(I)
VPRES(I)=Q(7)*RZERC(I)+Q(8)*VZERO(I)
RETURN

END
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C SUBRQOUTINE CNSTNT J D MCLEAN COMPUTES CONSTANTS FOR LAPLCE
C
SUBROUTINE CNSTNT
COMMON /DNBY/ RZERO(3)9yVZERDO(3) sPM{3)4VM(3)43Q(23)4PS{3)4G(3)4K(6),
1ACCRECyACCUI yACCLI yUS,UE4sUMyCJI29yDELM4R 4V 4DELS4DM(3),TMSTOP,
2TIMEASTIME,CHOVERyHTyHEsRPRES(3) ¢VPRES(3),ESTOP4DELTE AA(343,45),
BIPRINTyAOQ(646)9ICYCLE,IMOONs ISUNsTMOON{32425)3TSUN(4416),4DE(3)
IF(K({1)) 17,17,18
17 Q(12)=UE
GO T0 19
18 Q(12)=UM
19 Q(191=0.0
Q(20)=0.0
Q(21)=0.0
DO 10 I=1,3
Q(19)=Q(19)+RZERC(I)I*VZEROI(I)
Q{20)=Q(20)+VZERO(I)*x2
10 Q(21)=Q(2L)+RZERD(I )*x%x2
Q(9)= SQRT(Q(21))
Q(l)=(2.0/Q(9))-(Q(20)/Q(12))
Q(10)=1.0/Q1(1)
Q{1ll)= ABS(Q(10))
Q(13)=1.0/( SQRT{Q(11)}%Q(12)))
{(22)==-0(10)/Q(11)
Q(17)=Q(11)/Q(9)
Q(18)=1.0/Q(17)
Q{14)=Q(13)#Q(11)%x2
40 Q(19)=Q(19)*Q(13)
RETURN
END
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C

10
11
12

13
14

15

16

SUBROUTINE GVEC COMPUTES FORCING FUNCTION -- SEE APPENDIX B

SUBROUTINE GVEC

DIMENSION DS(3),D2(3)

COMMON /DNBY/ RZERO(3),VZERO(3)yPM(3),VM(3),Q(23)4PS(3),G(3),K(6),
1ACCRECyACCUI yACCLI yUSyUEyUMyCJ2yDELMyRyV4DELSsDM(3),TMSTOP,
2TIMEA, TIMEyCHOVERyHTyHEyRPRES(3)4VPRES(3),ESTOP,DELTEsAA(3,3,5),
3IPRINTyAOD(696)y ICYCLE, IMOON, ISUNoTMOON(32925) 9 TSUN(4,16),DE(3)

DM= VEHICLE-MOON POSITION VECTOR
DE=VEHICLE-EARTH POSITION VECTOR

CALL ROOT(PM(1),RMSQ,RMy1)
RM3=RMSQ*RM

IF(K(1)) 10,410,412

DO 11 I=1,3
DM(I)=RPRES({I)~PM(I)
DE(1)}=RPRESI(I)

GO TO 14

DO 13 I=1,3

DM({I)=RPRES(I)
DE(I)=RPRES(I)+PM(I)

DO 15 I=1,3

DS(I1)=DE(I)-PS(I)
D2{1)=PM(I)=PS(I)

CALL ROOT(DE{(1),RSQsRs1)

CALL ROOT(DM(1),DELMSQyDELM,1)
CALL ROOT(DS(1),DELSQ,yDELS,1)
CALL ROOT(D2(1),DEL2SQsDEL2,1)
DELS3=DELSQ*DELS

U3=-US/DELS3

R3=RSQ*R

IF(K(1)) 16416,17
DELM3=DELMSQ*DELM

CALL ROOT(PS(1),RSSQy4RS,s1)
RS3=RSSQ*%RS

Ul=-UM/DELM3

U2=-UM/RM3

U4=-=US/RS3
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17

18

20

21

22
23
24

GO TO 18

DEL23=DEL2SQ*DEL2

Ul==UE/R3

U2=UE/RM3

U4=US/DEL23

DO 19 1I=1,3
G{I)=U2%PM(I)+U3%DS(1I)
IF(K(1))20,20,22
BRK=140=5,0%RPRES(3)%%2/RSQ
CO=-UE*CJ2/(R3*RSQ)

DO 21 I=1,3
G(I)=G(I)+DE(I)*BRK*CD +U1l%*DM(I)+U4%PS(I)
G{3)=G(3)+2.0%DE(3)*CO

GO TO 24

DO 23 I=1,3
G(I)=G(I)+U1%DE(I)+U4%D2(1)
R=R

RETURN

END
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C
C

90

SUBROUTINE PARTLS J D MCLEAN COMPUTES TWO BODY TRANSITION
MATRICES -- SEE APPENDIX A

SUBROUTINE PARTLS

DIMENSION QR(5),C(18)4QQ(5),5(3),D2(4),D3(4),D4(4)

EQUIVALENCE (D2(1),C(2)),(D3(1),C(8)),(D4(1),C(9))

COMMON /DNBY/ RZERU(3)4VZERO(3)4PM(3)yVM(3)49Q(23)4PS(3),G(3),M(6),
1ACCREC,ACCUI yACCLIyUSyUE,UM,CJI29yDELMyRyV,DELS,H,DM(3),TMSTOP,
2TIMEA, TIME,CHOVERyHTyHE,RPRES(3)yVPRES(3)ESTOP+DELTE+AA(3,43,5),
3IPRINT,AO(646)yICYCLE, IMOON, ISUN,TMOON(32425)9TSUN(4,16)4DE(3)

DO 90 I=1,5

QR(I)=Q(I+3)

QR(IN)=Q(I+4)

C{17)=Q(10)/Q(12)

C(16)=Q(9)/Q(16)

C(15)=Q(12)/(Q(9)*Q(21))

C(14)=1.0-Q(8)

C(7)==Q(7)/Q(15)

C(9)=Q(17)*C(1l6)

C(2)=Q(2)*C(17)

C(5)=Q(4)}/(Q(9)=*Q(13)*Q(16))

C{10)= 3.0*C(17)*Q(1)

C(12)= Q(3)*C(17)

C(18)=C(9)*(C(10)+Q(18)*C(12)+2.0%Q{(19)*C(2))

C(3)= Q(17)*(Q(3)*C(18)=~2.0%C(2))

C(1)=(C(3)-Q(22)*C(2))*C(15)+C(9)*Q(3)**%x2/Q(21)

Cl6)=Q(7)*C(17)+C(5)*%C(18)

Cl10)==Q(14)*(C(10)-Q(2)*C(18))

C(4)=C(6)*C(15)=C(5)*Q(13)*Q(7)-Q(7}/Q(21)

C(9)==C(1l4)*xC(2)*Q(22)

Cl2)= C(2)%Q(22)*Q(T7)

C(5)=C(5)%C(14)*Q(13)

DO 9 I=1,3

C(I+10)=C(I)*C(16)

Cl11)=C(11)=-C(14)/Q(21)

C(l4)=C(l4)/Q(15)

C(8)=C(15)*%C(10)+C(2)
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51 AA(I,JyK)=(C(K)*RZERO(I)+D3(K)*VZEROC(I))I*RZERO(J)

52
53
11
12

41

14

13

17
50

DO 12 K=1,5
IF(K=3) 10,12,10
D011 I=1,3

DO 51 J=1,3

(D2(K)*RZERO(I)+D4(K)*VZERO(TI))*VZERO(J)
AA(T yT4K)I=AA(L,1,K}+QR(K)
GO TO 11
AA(T yI,K)=AA(T,I4K}+QQ(K)
CONTINUE
CONTINUE
DD 41 I=1,3
S(I)=C(7)*RZERO(I)+C(14)}*VZERD(TI)
DO 13 I=1,3
SR=0.0
SV=0.0
DO 14 J=1,3
SR=SR+RPRES(J)*AA(JyI,41)
SV=SV4+RPRES(J)*AA(J,y1,2)

DO 13 K=1,3
AA(KyT44)=AA(KyI44)+S(K)*SR
AA(KyI45)=AA(KyI95)+S(K)*SV
DO 17 1I=1,3

DO 17 J=1,3
AG(I,4)=AA(I,4Js1)
AD(TI+3,J+3)=AA(I,J,5)
AO(IoJ+3)= AA(I,44,2)
AO(I+37J)=AA(17J,4)

RETURN

END

+



6t

C GENERAL PURPOSE SUBROUTINES

$IBFTC TGO50B NODECK,NOREF

c MATRIX MULTIPLY ROUTINE

CTGO50B SUBROUTINE XPYXM J D MCLEAN J=1 C=A%*B J=2 C=A*BT J=3 C=AT*B
SUBRBUTINE XPYXM({A;ByCyNRAyNCAsNRB¢yNCByJ)

C NRA=NO. OF ROWS IN A

c NCA= NO. OF COLUMNS IN A, ETC

$IBFTC TGO50D
CTGO50D SUBROUTINE ROOT J D MCLEAN
SUBROUTINE ROOT(X4RSQyRyNFCA)

c SUBROUTINE RBOT COMPUTES MAGNITUDEs Ry AND SQUARE, RSQs OF VECTOR
C GIVEN BY ANY 3 CONSECUTIVE TERMS OF ARRAY, Xy STARTING WITH
c X{NFCA)

$IBFTC TGO50S

C LOADS COEFFICIENTS FOR MOON AND SUN POLYNOMIALS L MCGEE
SUBROUTINE MSLOAD(TMOON,LTABM,TSUNsLTABSyDATE 4KM4KS)

THE CALLING PROGRAM WILL ORDINARILY HAVE TMOON DIMENSIONED AS
TMOON(LTABM,25) AND TSUN DIMENSIONED AS TSUN(LTABS,16) WHERE

LTABM AND LTABS ARE THE NUMBER OF ROWS IN THEIR RESPECTIVE TABLES.

[eXkaXe]

$IBFTC TGO50T

C COMPUTES SUN POSITION FROM POLYNOMIAL COEFFICIENTS L MCGEE
SUBROUTINE SUNP(TIME,PSyTSUN,LTABSyNOSPTS4KERR,I)
c PS IS POSITION VECTOR OF SUN, TIME IS FROM START OF TABLE IN SEC.

$IBFTC TGOS50U

c COMPUTES MOON POSITION AND VELOCITY FROM POLYNOMIAL L MCGEE
SUBRBUTINE MOON (TIME,QM,TMOON,LTABMyNOMPTS4KERRyPOV4+1)

C QM IS POSITION OR VELOCITY VECTOR OF MOON DEPENDING ON WHETHER

C POV IS POS OR VEL IN CALLING PROGRAM
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TABLE I.- TIME REQUIRED FOR ITERATIVE SOLUTION OF KEPLER'S EQUATTION

Trajectory Precision of Accuracy to Time for 100
initial conditions conic solution one part in - solutions, sec
Transearth Single 107 3.2
Translunar Single 107 2.0
Transearth Double 108 8.0
|  Translunar Double 108 bl
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Figure 1.- Total number of integration steps with step size adjusted only by
constraint on r/R.
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Figure 3.~ Deviations in X component of position.
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